000 04072cam a22004217i 4500
999 _c185696
_d185695
001 19135591
005 20241226155156.0
008 160614t20162016flua bf 001 0 eng d
010 _a 2016302636
020 _a1482249073
020 _a9781482249071
020 _z9781482249088 (PDF ebook)
035 _a(OCoLC)ocn920852092
040 _beng
042 _alccopycat
050 0 0 _aQA76.9.B45
_bH36 2016
082 0 4 _a005.7
_223
_bHAN
245 0 0 _aHandbook of big data /
_cedited by Peter Bühlmann, Petros Drineas, Michael Kane, Mark van der Laan.
264 1 _aBoca Raton, FL :
_bCRC Press, an imprint of the Taylor & Francis Group,
_c[2016]
264 4 _c©2016
300 _axvi, 464 pages :
_billustrations (some color) ;
_c26 cm.
490 1 _aChapman & Hall/CRC handbooks of modern statistical methods
500 _a"Chapman & Hall book."
504 _aIncludes bibliographical references and index.
505 0 _aThe advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- Big-n versus big-p in big data / Norman Matloff -- Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- Integrate big data for better operation, control, and protection of power systems / Guang Lin -- Interactive visual analysis of big data / Carlos Scheidegger -- A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- High-dimensional computational geometry / Alexandr Andoni -- IRLBA: fast partial singular value decomposition method / James Baglama -- Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- Mining large graphs / David F. Gleich and Michael W. Mahoney -- Estimator and model selection using cross-validation / Iván Díaz -- Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- Learning structured distributions / Ilias Diakonikolas -- Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- High-dimensional regression and inference / Lukas Meier -- Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- Scalable super learning / Erin LeDell -- Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- Targeted learning for variable importance / Sherri Rose -- Online estimation of the average treatment effect / Sam Lendle -- Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.
520 _a"Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice"--
_cProvided by publisher.
650 0 _aBig data
_xStatistical methods
_vHandbooks, manuals, etc.
655 7 _aHandbooks and manuals.
_2lcgft
700 1 _aBühlmann, Peter,
700 1 _aDrineas, Petros,
700 1 _aKane, Michael
_q(Michael John),
700 1 _aLaan, M. J. van der,
830 0 _aChapman & Hall/CRC handbooks of modern statistical methods.
856 _3EB
_uhttps://www.taylorfrancis.com/books/edit/10.1201/b19567/handbook-big-data-mark-van-der-laan-petros-drineas-michael-kane-peter-b%C3%BChlmann
_ySF
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _cEB