Normal view MARC view ISBD view

Handbook of big data / edited by Peter Bühlmann, Petros Drineas, Michael Kane, Mark van der Laan.

Contributor(s): Bühlmann, Peter | Drineas, Petros | Kane, Michael (Michael John) | Laan, M. J. van der.
Series: Chapman & Hall/CRC handbooks of modern statistical methods: Publisher: Boca Raton, FL : CRC Press, an imprint of the Taylor & Francis Group, [2016]Copyright date: ©2016Description: xvi, 464 pages : illustrations (some color) ; 26 cm.ISBN: 1482249073; 9781482249071.Subject(s): Big data -- Statistical methods -- Handbooks, manuals, etcGenre/Form: Handbooks and manuals.DDC classification: 005.7 Online resources: eBook Single File
Contents:
The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- Big-n versus big-p in big data / Norman Matloff -- Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- Integrate big data for better operation, control, and protection of power systems / Guang Lin -- Interactive visual analysis of big data / Carlos Scheidegger -- A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- High-dimensional computational geometry / Alexandr Andoni -- IRLBA: fast partial singular value decomposition method / James Baglama -- Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- Mining large graphs / David F. Gleich and Michael W. Mahoney -- Estimator and model selection using cross-validation / Iván Díaz -- Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- Learning structured distributions / Ilias Diakonikolas -- Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- High-dimensional regression and inference / Lukas Meier -- Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- Scalable super learning / Erin LeDell -- Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- Targeted learning for variable importance / Sherri Rose -- Online estimation of the average treatment effect / Sam Lendle -- Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.
Summary: "Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number URL Status Date due Barcode
e-Book e-Book
Internet
005.7 HAN (Browse shelf) https://www.taylorfrancis.com/books/edit/10.1201/b19567/handbook-big-data-mark-van-der-laan-petros-drineas-michael-kane-peter-b%C3%BChlmann Available NB3281

"Chapman & Hall book."

Includes bibliographical references and index.

The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- Big-n versus big-p in big data / Norman Matloff -- Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- Integrate big data for better operation, control, and protection of power systems / Guang Lin -- Interactive visual analysis of big data / Carlos Scheidegger -- A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- High-dimensional computational geometry / Alexandr Andoni -- IRLBA: fast partial singular value decomposition method / James Baglama -- Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- Mining large graphs / David F. Gleich and Michael W. Mahoney -- Estimator and model selection using cross-validation / Iván Díaz -- Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- Learning structured distributions / Ilias Diakonikolas -- Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- High-dimensional regression and inference / Lukas Meier -- Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- Scalable super learning / Erin LeDell -- Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- Targeted learning for variable importance / Sherri Rose -- Online estimation of the average treatment effect / Sam Lendle -- Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.

"Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice"-- Provided by publisher.

There are no comments for this item.

Log in to your account to post a comment.
© University of Jaffna